

Operation Reliability of J-PARC Main Ring

Masashi Shirakata

KEK/J-PARC

ARW2015 (27th April to 1st May)

Crowne Plaza, Knoxville, Tennessee, USA

Contents

Introduction of J-PARC

Reliability review of J-PARC

User availability and main cause of beam stop

The long beam stop

- 1. Megaquake
- 2. Radiation Accident at Hadron Hall
- 3. Fire in the 2nd experimental hall in of MLF (Meson and Life science Facility)

Summary

Introduction of J-PARC

LINAC

SDTL

Ion source, LEBT, RFQ, MEBT(2 choppers, 2 bunchers)

RCS (Rapid Cycling Synchrotron)

MR (Main Ring slow cycling synchrotron)

Three dispersion free straight sections of 116-m long:

- Injection and collimator systems
- Slow extraction (SX)

to Hadron experimental Hall (Rare decay, hyper nucleus..)

 Rf cavities and Fast extraction(FX) (beam is extracted inside/outside of the ring) outside: Beam abort line

inside: Neutrino beamline (intense n beam is send to SK located 300 km west)

Original by T. Koseki

Number of Main Components

<u>LINAC</u>			<u>RCS</u>			MR		
name	number	power supply	name	number	power supply	name	number	power supply
RFQ	1	HVDC01	BM	24+(1)	BMDC+BMAC	BM	96	BM1-6
DTL	3(3)	HVDC01	QFN	12	QFN PS			
SDTL	32(16)	HVDC02-05	QDN	12	QDN PS	QFN	48	QFN PS
ACS	21(21)	HVDC06-12	QFX	12	QFX PS	QDN	48	QDN PS
	()klystron		QDX	9	QDX PS	QFX	48	QFX PS
			QFL	6	QFL PS	QDX	27	QDX PS
Q	77 (DTL1)	60	QDL	6	QDL PS	QFP	6	QFP PS
	44 (DTL2)	31	QFM	3	QFM PS	QFR	9	QFR PS
	28 (DTL3)	20				QDR	6	QDR PS
	62 (SDTL)	35	SM	18	SM PS	QFS	6	QFS PS
Steering	26	26				QDS	6	QDS PS
			RF			QFT	6	QFT PS
						QDT	6	QDT PS
And Beam	transnort lir	nes						
And <u>Dean</u>						SFA	24	SFA PS
IFRT MFF	RT1 MFRT2	3BT 3NBT 3-50	RT NI I line	SV-HD line		SDA	24	SDA PS
with many	/ dipoles, qua	adrupoles, and ot	her devices	5		SDB	24	SDB PS
						RF	9	

- J-PARC is a big system.
 - Efforts which raises the reliability of each device are continued...
 - For highly reliable operation, equipment of facilities is partly duplicated: cooling water pumps, fans, chillers, ...

Reliability review of J-PARC

- First physics run of NU
- Trouble was 135 hours (9.0%) in user time 1504 h.
- Mainly due to the RFQ conditioning in order to cure the discharge problem since 2008.

Operation data by M. Adachi

Discharge problem in the RFQ

- The first severe discharge problem in the RFQ occured in September 2008.
- Before this problem, the availability of linac was more than 90 %.

- The RFQ downtime (both scheduled and unscheduled) dominated the machine time in runs in Dec. 2008 and Jan. 2009.

"RFQ backup group" has been organized, who prepares the "backup RFQ" though it takes about one year.

Inside view of RFQ

RFQ (Radio Frequency Quadrupole) uses electric quadrupole field for beam focusing. Discharge may occur at the surface with high voltage potential.

Original slide by J-PARC LINAC group

Operation Reliability [1']

- In FY2010 and FY2011, time for "Startup and Conditioning" became shorter (~10%) because the machine operation got off the ground to a good start.
- Operation time of FY2011 was half of those of FY2009 and FY2010 because operation was cancelled (from March of FY2010) by Megaquake.
- In addition, user time from 4:10 22nd to 24:00 31st March (10 days) in 2012 (the last month of FY2011) was cancelled due to the trouble of DC power supply (HVDC01) of LINAC klystron.
- User availability was 91.9% in 2010, and 73.4% in 2011.

Operation data by M. Adachi

Klystron DC power supply No.1 (HVDC01)22nd March 2012, AM4:10DC_over_current

HVDC1: power source of RFQ, DTL1, DTL2, and DTL3

Original slide by H. Oguri and E. Chishiro

NI.

ブッフホルタ ブッフネルリ

(重)

HVTR藏 HVTR

6Pst 6Ps2 6Ps3

Oríginal slíde by H. Ogurí and E. Chíshíro

Operation Reliability [2]

FY2012 One year after the Megaquake (6328 h)

Downtime mainly comes from MR SX(63 h), LINAC HVDC(59 h), RFQ(31 h)

16:25 25th Oct. 2012 00:51 14th Mar. 2013 SX_SMS1 vacuum leak (19 h)

SX_SMS1 break down (37 h), HD beam was cancelled.

Operation data by M. Adachi

Breakdown of septum conductor of SMS1

SMS1

Low field septum for slow beam extraction

∆t=

Nov. 2012

Conductor at the downstream bended out to the circulating beam!

Coil = 2 turns Thickness= 3.5 mm (0.5 mm for ceramic) Field strength= 1.38kG @3010A Cooling pipe= ϕ 3 mm(inner) t0.5 mm 18 deg (2.1 L/min)

14th Mar. 2013

Operation Reliability [3]

FY2013 LINAC ACS installation and Radiation accident at Hadron hall (3574 h)

Downtime mainly comes from MR Inj.(114 h), LINAC HVDC(103 h), and RCS shift-bump(73 h) 13:50 8th May 2013 Water leak of MR Injection septum 1

Operation data by M. Adachi

Oríginal slíde by K. Ishíí

Oríginal slíde by K. Ishíí

Oríginal slíde by K. Ishíí

Oríginal slíde by K. Ishíí

Oríginal slíde by K. Ishíí

Oríginal slíde by K. Ishíí

Oríginal slíde by K. Ishíí

May 2013	
8 th	Revelation! of water leak and investigation
9 th	Design, scheduling, and applications for radiation and fire work
10 th	Education for workers, open flange, measurement, line-out,
	repair of hollow-conductor
11 th	Pressure test, re-welding the end plate, welding reinforce bars to the magnet, grinding
12 th	Welding reinforce pieces to the magnet, line-in, alignment, water check, vacuum leak check, current test (all night long)
13 th	Confirmation of recovery check

6 days for recovery

MR injection septum 1 was repaired and reinforced. No trouble until now. (April 2015)

We have a plan to replace this by a new septum (all new designed) this summer.

Operation Reliability [4]

FY2014 Ordinary year without HD experiments until 7th February 2015 (4535 h)

Downtime mainly comes from LINAC HVDC(154 h), RCS BM(115h), and LINAC ACS(63h) MR worked well.

Operation data by M. Adachi

Resonant network and power supply for BM

April 2014

- 11th 20:34 <u>Electromagnetic contactor OFF</u> for the oil pump and cooling fan of BMPS_CH11
- 12th 02:12 Recovered by a temporary expedient on that electromagnetic contactor

----- (Beam ON) ------

- 15th 08:52 <u>Breakdown of a thermal relay</u> for the oil pump of BMPS_CH11 The cause was found out to be a breakdown of the oil pump.
- 16th, 17th Preparation and scheduling
- 18th Replace the pump
- 19th Current test, and startup magnets (It takes time to heat-up the magnets)
- 20th Beam tuning
- 21st 09:13 Recovery the user beam

6 days for recovery (after the 2nd beam down)

Spare parts are ready now. It takes 3 days for recovery at the next time. No trouble until now. (April 2015)

Investigation and Treatment of HVDC

What's LINAC HVDC Power Supply?

High Voltage DC power supply for klystrons.Number of HVDCs:12

History of diode breakdown

22 nd Mar. 2012	#1 (FY2011)
7 th Dec. 2013	#2
30 th Jun. 2014	#5

Major Causes of HVDC down

- 1. Insufficient aging time
- 2. Noise distributed by AVR
- 3. Capacity decline of condenser in diode stack (cause of diode breakdown)
- #7 ~ #12: Newly installed with ACS in 2013. (They only need aging time.)
- Voltage clamp of main circuit of AVR
- Reinforced insulation of gate circuit of AVR
- Adoption of higher quality condenser

Responsible: E. Chishiro

Substantial reduction in downtime can be expected.

HVDC IS OKAY NOW!?

Known Devices tend to be Broken Down

LINAC HVDC Power Supply We expect

We expect this term will disappear from here.

Weak point:	Diode in high voltage stack
Rate:	1 /year
Backup:	1 unit
Recovery time:	2 days for swap and restart

RCS and MR RF

Weak point:	Vacuum condenser
Rate:	0 or 1 or 2 /year
Backup:	several
Recovery time:	4 hours for access to the accelerator tunne
	2 hours for replace

MR FX kicker

Weak point:	Diode in high voltage stack
Rate:	0 or 1 /year
Backup:	1 unit
Recovery time:	3 hours for swap cables to the spare power unit

Operation Reliability [5]

(Most recent MR)

The Long Beam STOP

LINAC

The worst point subsided more than 40 mm at the upstream point of SDTL section. The horizontal curve was also observed between the SDTL section and the ACS section. The entrance of the first arc was displaced 25 mm to the east.

"The Displacement of J-PARC accelerators caused by Mega Quake" can be seen in Ref. M. J. Shirakata et al., TUPS057 IPAC 2011

Deformation of rings

Time Series [1/2]

3/11 Earthquake!!

- J-PARC had completely closed. No electricity, No water, No gas stations!
- 3/17 **The first investigation** by division leaders. Still No electricity.
 - 1. Large displacements of accelerators and beam lines were found, however, fortunately ceramics components were not broken!
 - 2. The water could be used.
 - 3. LINAC power station was largely damaged!
- 3/22 Recovery works started!!
 - J-PARC site had opened. The LAN was back.
- 3/24 Internal telephone started recovering.
- 3/25 Electricity (for lights) started recovering. No air-conditioner.
- 3/29 LINAC power station was back. (more 5 months were needed for power devices)
- 3/30 Lights and local phone in acc. tunnel were back! (Still partially) Water pump for drainage started.
- 3/31 Geometrical survey for acc. alignment check started.
- 4/01 Dehumidifiers were introduced. Vacuum check for beam pipes started.
- 4/11 Access control level to the acc. tunnel was changed lower.
- 5/30 High power test started in the MR area
- 6/20 Re-alignment of cavities at LINAC started.

This is the key fact. If some of them were broken, it took one more year...

Water stop works in tunnel were also going on in parallel.

with new beam line shape

Time Series [2/2]

- 8/24 Re-alignment of magnets at MR started.
- 10/11 Test operation of ion source started.
- 10/12 Test operation of RFQ started.
- 10/31 Alignment of MR main magnets finished.
- 11/15 Alignment of LINAC and L3BT finished.
- 11/28 RCS magnets started current test.
- 12/01 Ion source and RFQ got ready.RCS magnets and vacuum got ready.All cavities of LINAC started conditioning.
- 12/07 RCS full current test.
- 12/09 LINAC started.
- 10/10 MR current test.
- 12/12 <u>RCS got ready.</u>
- 12/14 MR vacuum was ready.

12/17 RCS started.

- 12/15 MR full current test.
- 12/19 MR got ready.
- 12/21 MLF started.
- 12/22 MR started.

with new beam line level

RCS was inferred that the deformation of ring was acceptable for 300kW operation.

Re-alignment of RCS was postponed to 2013.

All accelerators were back in 2011. Recovery from the 3.11 was **286 days**.

The Long Beam Stop [case 2]

Mega Quake (3.11)

Radiation Accident at Hadron Hall

- The radiation monitoring level increased in the Hadron experimental hall.
- The experimental staff and students 36 of 104 people, who were in the hall at that time, were exposed to radiation from 0.1 to 1.7 mSV.
- An exposure doses were detected at the monitoring posts out of the Hadron experimental hall.
- The beam operation of all in May and June was cancelled.

Fire in the 2nd experimental hall of MLF (Meson and Life science Facility)

Outline of the Fact

Au target

- J-PARC main ring provides 3 x 10^13 protons during 2 seconds in 24kW SX operation.
- At 11:55 23rd May, 2 x 10^13 protons were extracted in 5 ms by an accident.
- The Au-target was broken, and evaporated isotopes run away through ventilating fans.
- It was estimated to 20 GBq.
- An exposure dose was calculated to be 0.17µSv on the closest site boundary.

The Long Way to the Return of Hadron Beam

Beam for hadron experiments was stopped on 23rd May 2013. All experiments were cancelled!

- Investigation of causes and countermeasures
- Reports (by ordinance) to
 - the Nuclear Regulation Authority (NRA)

[because J-PARC is located in atomic energy agency (JAEA).] Minister of Education, Culture, Sports, Science and Technology Ibaraki-ken, Tokai village (local governments)

- Suggestions from the third party panel by distinguished citizens
- Proposals from the prefectural governor

• Organizational reformation for the safety

- Large-scale reform of the Hadron experimental hall Radiation full controlled air-conditioning and ventilating system
 - Hand-foot monitoring system at the entrance
- Town meetings (several times, resident explanatory meetings)

Beam recovery was at 23:11 9th April 2015. <u>686 days!!</u> It has taken nearly 23 months!!

The Long Beam Stop [case 3]

Mega Quake (3.11)

Radiation Accident at Hadron Hall

Fire in the 2nd experimental hall of MLF (Meson and Life science Facility)

15:01 16th January 2015

A transformer in a power supply burned in the 2nd experimental hall where was a radiation controlled area of MLF.

- Immediately a staff put it out by a fire extinguisher.
- Nobody was injured.
- Nobody was irradiated.
- No spreads.

Outline of the Fact

- Cause was a design mistake of modification of the power supply for septum magnet.
- Fire was immediately found out and put out by a fire extinguisher.
- There were no spreads.

Beam was back on 20th February. It took **35 days**.

Summary

- Reliability of J-PARC beam is about 90% for user operation.
- Rare case of breakdown tends to cause a long beam stop though spare parts are prepared.
- The cure of LINAC HVDC has done. We expect that it gets away from the worst top three in FY2015.
- Recovery from the Mega-quake was surprisingly fast.
- Some troubles bring an extremely long shutdown because the J-PARC was located in atomic energy agency.

In addition, in 2015

- T2K experiment achieved 10^21 POT 15:15 26th March
- MR beam power achieved **300kW** to NU 22:54 25th February
- RCS beam power achieved **500kW** to MLF 11:00 14th April

References

Sorry, most of all materials are written in Japanese!

- M. Adachi 年度運転統計 2009-2011, 2012, 2013, 2014(partial)
- Y. Ikeda et.al セプタム火災報告書配布版150123_県提出(最終)
- E. Chishiro クライストロン電源フォルト対策 20141121_担当者打合せ
- M. Kinsho RCS-BMPS_CH11故障-140425
- Y. Ikeda ハドロン事故一物理学会徳島報告
- K. Ishii
 入射セプタム1 トラブル報告
- 報告 20130926_日本物理学会 20130524 担当者打合せ
- ム1 トラノル報告 201305
- M. Tomizawa, T. Koseki

SX低磁場セプタムのトラブル 20130412_担当者打合せ

- E. Chishiro クライストロン電源1号機故障_シナリオ2_20120329
- H. Oguri クライストロン電源1号機故障について_20120323
- M. J. Shirakata et al TUPS057 IPAC 2011
- Geospatial Information Authority of Japan (GSI), <u>http://www.gsi.go.jp/chibankansi/chikakukansi40005.html</u> April 2011

Appendix

bufferred update

Milestones

Linac Beam Commissioning started in Nov, 2006.

The linac accelerated the beam to a design value, 181 MeV on 24th Jan, 2007.

RCS Beam Commissioning started in Oct., 2007.

The RCS accelerated the beam to a design value, 3 GeV on 31st Oct, 2007.

Beam Commissioning of MR started in May, 2008.

Installation of FX and SX components were installed in summer, 2008. Hadron and Neutrino beamline components were installed in summer, 2008.

MLF experiments started on 23rd Dec, 2008.

The MR accelerated the beam to a design value, 30 GeV on 23rd Dec, 2009.

Extraction to hadron beamline on 27th Jan, 2009. Secondary beam was comfirmed 11th Feb, 2009. Extraction to neutrino beamline on 23rd April, 2009. Neutrino beam was comfirmed 23rd April, 2009.